Gaussian Radial Growth

نویسندگان

  • Kristjana Ýr Jónsdóttir
  • Eva B. Vedel Jensen
چکیده

The growth of planar and spatial objects is often modelled using one-dimensional size parameters, e.g. volume, area or average radius. We take a more detailed approach and model how the boundary of a growing object expands in time. We mainly consider star-shaped planar objects. The model can be regarded as a dynamic deformable template model. The limiting shape of the object may be circular but this is only one possibility among a range of limiting shapes. An application to tumour growth is presented. Two extensions of the model, involving time series and Lévy bases, respectively, are briefly touched upon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Evolutionary q-Gaussian Radial Basis Function Neural Network to determine the microbial growth/no growth interface of Staphylococcus aureus

In this paper, q-Gaussian Radial Basis Functions are presented as an alternative to Gaussian Radial Basis Function. This model is based on q-Gaussian distribution, which parametrizes the Gaussian distribution by adding a new parameter q. The q-Gaussian Radial Basis Function allows different Radial Basis Functions to be represented by updating the new parameter q. For example, when the q-Gaussia...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Gaussian Process Time Series Model for Life Prognosis of Metallic Structure

Al 2024-T351 has been modeled using a kernel-based multi-variate Gaussian Process approach. The Gaussian Process model projects fatigue affecting input variables to output crack growth by probabilistically inferring the underlying nonlinear relationship between input and output. The Gaussian Process approach not only explicitly models the uncertainty due to scatter in material microstructure pa...

متن کامل

Use of the q-Gaussian Function in Radial Basis Function Networks

Radial Basis Function Networks (RBFNs) have been successfully employed in several function approximation and pattern recognition problems. In RBFNs, radial basis functions are used to compute the activation of artificial neurons. The use of different radial basis functions in RBFN has been reported in the literature. Here, the use of the q-Gaussian function as a radial basis function in RBFNs i...

متن کامل

Comparing fixed and variable-width Gaussian networks

The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004